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Superparamagnetic colloidal particles confined to a flat horizontal air-water interface in an external magnetic
field, which is tilted relative to the interface, form anisotropic two-dimensional crystals resulting from their
mutual dipole-dipole interactions. Using real-space experiments and harmonic lattice theory we explore the
mean-square displacements of the particles in the directions parallel and perpendicular to the in-plane compo-
nent of the external magnetic field as a function of the tilt angle. We find that the anisotropy of the mean-square
displacement behaves nonmonotonically as a function of the tilt angle and does not correlate with the structural
anisotropy of the crystal.
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It is common wisdom that a one-component classical
many-body system consisting of particles at constant density
that interact, e.g., via a pairwise-additive repulsive inverse-
power potential, freezes into a periodic crystal lattice at zero
temperaturef1g. At finite temperatures and prior to melting,
the crystal is still stable but the particles perform small-
amplitude excursions from their equilibrium positions. The
averaged mean-square displacement around the equilibrium
lattice sites, which is a quantitative measure of these particle
excursions, plays a key role in describing the bulk melting
process of the crystal: the traditional Lindemann rulef2,3g
states that a solid melts if the root mean-square displacement
exceeds about 10% of the lattice constant. This phenomeno-
logical rule is a good estimate for melting in three spatial
dimensions. In two dimensions, however, mean-square dis-
placements are divergingf4g, but fluctuations of the relative
distance of nearest neighbors can be nevertheless used to
establish a bulk Lindemann melting rulef5g.

In this paper, we investigate theanisotropyof the mean-
square displacements in two-dimensional anisotropic crys-
tals. In high symmetry crystals, the mean-square displace-
ment is expected to be almost isotropic. Typically, there is
only a small difference in the amplitudes of the particle ex-
cursions in the direction towards their nearest neighbors and
those pointing towards a void. In fact, detailed investigations
for three-dimensional hard sphere face-centered-cubic crys-
tals have revealed that the anisotropies are only significant
close to meltingf6g. This will change, on the contrary, for
anisotropic crystals of low symmetry, where the crystal
structure itself already provides different lattice constants
forming the conventional unit cell. An interesting question is
whether the anisotropy of the underlying crystal lattice cor-
relates with the anisotropy of the particle mean-square dis-
placement, i.e., whether the latter follows the crystal aniso-
tropy or not.

Here we study an anisotropic two-dimensional colloidal
crystal composed of superparamagnetic particles that are
pinned by gravity to a horizontal water-air interfacef5g and
experience an external magnetic fieldB tilted relative to the
normal of the water-air interface by an anglew, i.e., we as-

sign the valuew=0° to a magnetic field pointingperpendicu-
lar to the confining plane. The magnetic field induces mag-
netic dipoles in the colloidal particlesf7g and the mutual
interaction between them is a pairwise-additive dipole-dipole
interaction. If the magnetic field is directed perpendicular to
the interfacesw=0°d, the in-plane interaction is isotropic and
purely repulsive. Then, a two-dimensional triangularsor hex-
agonald crystal is stable. By changing the tilt anglew of the
field, the in-plane interaction becomes anisotropic and the
corresponding stable crystal has the structure of a two-
dimensional oblique latticef8,15g. We explore the anisotropy
of the mean-square displacements in both directions, perpen-
dicular and parallel to the in-plane projectionBi of the ap-
plied external fieldB, as a function of the tilt anglew in the
regime where the interactions are anisotropic but still repul-
sive. Our main finding is that the anisotropy of the mean-
square displacement doesnot correlate with the lattice aniso-
tropy. In particular, as the tilt anglew is increased, the
displacements towards the nearest neighbors are first smaller
than those perpendicular to the field but then they exceed the
latter at a tilt anglew.22°. This is a hint to different path-
ways of defect formation at higher temperatures and there-
fore could imply different scenarios of two-dimensional
melting of anisotropic crystalsf9–11g. Furthermore, both dis-
placements behave nonmonotonically as functions ofw at
fixed temperature. We obtain our results by using both real-
space experiments of magnetic colloids and a harmonic lat-
tice theory for a dipole-dipole interaction and find good
agreement between the two.

In our experiments, monodisperse polystyrene particles
f12g with a diameter of 4.5mm and a mass density of
1.5 g/cm3 are confined to the water/air interface of a hang-
ing water droplet by gravity. The particles are superparamag-
netic due to doping with Fe2O3 nanoparticles, and, therefore,
magnetic dipole moments can be induced by applying an
external magnetic fieldB. As shown in Ref.f13g, the inter-
action between the particles is precisely described by the
dipole-dipole interaction, which dominates all other interac-
tions. The cylindrical sample cellsdiameter of 8 mmd is hori-
zontally aligned, and the flatness of the interface is con-
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trolled with an accuracy of ±1mm in order to achieve a
uniform particle density throughout the sample cell. The col-
loids were observed through a 53 microscope objective by
digital video microscopy. The size of the field of view was
8403620 mm2; usually 2000–3000 particles were observed,
while the whole cell contained roughly 200 000 particles.
The diameter of the particles is typically around 9 pixels
with one pixel covering the area of roughly 1mm2 leading to
an expected accuracy in the particle coordinates of about
±0.1 mm. All measurements were carried out at room tem-
perature. The magnitude of the external magnetic fieldB was
used to control the interaction strengthG to be defined
shortly. The anisotropy of the interaction between the par-
ticles was controlled by tilting the magnetic fieldB away
from the direction vertical to the sample plane.

In a system interacting by means of a power-law poten-
tial, all structural and thermodynamic properties depend on a
single dimensionless combination of temperature and den-
sity, the so-called coupling constantG. For the case at hand,
in which the magnetic moments of the involved particles are
proportional to the product of the magnetic susceptibilityx
and the external fieldB, this coupling constant is given by

G =
m0sxBd2

8pkBT
r3/2, s1d

wherekB is Boltzmann’s constant,m0 is the magnetic perme-

ability of vacuum, andr is the two-dimensionalareadensity
of the systemf14g.

After equilibration of the system for several days in the
crystalline state, the entire sample consisted of one mono-
crystalline domain. Figure 1 shows a typical example of the
centered rectangular crystal lattice observed. The underlying
lattice was determined by extracting the lattice constants
from the Fourier transform of the particle positions and has
been shown to agree perfectly with theoretical calculations
f15g. Only in the case of tilting angles between 0° and 10° it
is difficult to compare theory and experiments since within
this region anisotropy is too small to align the crystal lattice
with respect to the external magnetic field.

From the experimentally determined particle positions,
we have extracted the projections of the time-dependent Lin-
demann parameter, defined asf15,16g:

gxstd =
1

a2M
o
m=1

M

kfDxjstd − Dxj+mstdg2l s2d

and

gystd =
1

a2M
o
m=1

M

kfDyjstd − Dyj+mstdg2l s3d

perpendicular and parallel to the in-plane component of the
magnetic field, which is pointing along they-axis. In Eqs.s2d
and s3d above,Dxkstd=xkstd−xks0d and Dykstd=ykstd−yks0d
denote, respectively, thex- and y-components of the dis-
placement of the particle centered at thekth lattice site.
Moreover, the summation contains the relative displacements
of M neighbors of any given site and the average over those
is taken via a division throughM. Finally, the Lindemann
parameter is rendered dimensionless by dividing througha2,
wherea is the lattice constant along they-direction. In the
case of an isotropic interaction potentialsw=0°d, the particle
coordinates are rotated prior to the calculation of the Linde-
mann parameter in order to align one of the lattice vectors
with the y-axis, which is determined by the geometry of the
magnetic field apparatus. Such a rotation is not necessary for
the centered rectangular crystalssw.0°d, since the shorter
of the two lattice vectors is then pointing along the in-plane
component of the magnetic field.

In Fig. 2 we show three examples of the two projections
of the Lindemann parameter for differentG and tilting
angles. As expected for a crystalline state, a constant value is
approached in the long-time limit. Note that in the case of
w=21.8°sFig. 2, rightd the projection parallel to the in-plane
component of the magnetic field islarger than the one per-
pendicular to the field, whereas in case ofw=19.3° sFig. 2,
leftd it is the other way around.

FIG. 1. Camera image of an anisotropic colloidal crystal atw
=21.8° ,B=0.8 mT, andr=6.83109 m−2. In the upper left corner
nearest neighbor bond orientations are highlighted by lines. The
angles of 50° and 65° between these directions clearly show the
anisotropy of the lattice. The anisotropy is also obvious from the
Fourier transformation of the particle positionssinsetd: There is a
clear deviation from the symmetric hexagon corresponding to the
triangular lattice.

FIG. 2. The Lindemann pa-
rameter parallelsopen symbolsd
and perpendicularsfull symbolsd
to the in-plane component of the
magnetic field forw=19.3° sleftd
andw=21.8° srightd.
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In order to analyze the particle displacements theoreti-
cally, we employ harmonic lattice theoryf17g. The latter pro-
vides an explicit expression for the equal-time correlators
between the particle displacements, which can then be com-
pared with the corresponding experimental long-time limit of
the Lindemann parameters.

We aim to provide a theoretical explanation for the aniso-
tropy of the long-time Lindemann parameters observed in
the experiments. The Lindemann parameters along and per-
pendicular to the magnetic field are defined by Eqs.s2d and
s3d. The underlyingstatic crystal is spanned by two lattice
vectorsa andb and can be equivalently described by the two
lattice constantsa and b and the anglec between the two
lattice vectors. The parametersa, b, andc are uniquely de-
termined for any givenw: the optimal periodic structure for a
given tilt angle is obtained by minimization of the ground-
state energyslattice sumsd using the dipole-dipole pair inter-
action potentialf8g:

vsr d =
m0sxBd2

8p

1

r3s1 − 3 sin2 w cos2 ud, s4d

wherer is the interparticle separation vector,r is its magni-
tude, and cosu=r ·Bi / srBid. As it has been found in Ref.f8g,
the shortest of the two lattice vectors is always pointing
alongBi. We adopt the convention that this vector isa, hence
aøb.

The harmonic theory used to calculate the equal-time cor-
relation functions of Eqs.s2d and s3d, kuDxj −Dxj+mu2l and
kuDyj −Dyj+mu2l f17g is based on the diagonalization of the
dynamical matrixDsqd sa two-by-two matrix in our cased,
obtained as the discrete Fourier transform of the real space
dynamical matrixDsRd with elementsf1g:

DmnsRd = dR,0o
R8

vmnsR8d − vmnsRd, s5d

where

vmnsr d =
]2vsr d
]rm ] rn

, s6d

rm,n is thesm ,nd-component of the vectorr , m , n=x, y, and
the potentialvsr d is specified in Eq.s4d. The quantitiesR and
R8 are lattice vectors.

The diagonalization yields for everyq-value two eigen-
valuesli and the corresponding eigenvectorsei , i =1, 2 with
Cartesian componentsei,x and ei,y on thex- and y-axes, re-
spectively. The Lindemann parameters in the directions per-
pendicular and parallel to the in-plane projection of the ex-
ternal magnetic field are given within this approximation
through the expressionf18g:

gm =
kBT

K
E

Cr

1

M o
m=1

M

sin2 q ·Rm

2
S e1,m

2

l1sqd
+

e2,m
2

l2sqd
Dd2q

sm = x,yd. s7d

In Eq. s7d above, the integration is carried out over the
first Brillouin zoneCr of the reciprocal lattice. The quantity
at the denominator of the prefactor is given byK=p2a2/A

>10, whereA is the area of the direct lattice cell, hence this
ratio depends only on the tilt angle of the external field. The
summation is carried out overM nearest neighbors that are
connected to a given lattice point through the vectorRm. For
the cases of tilted external fieldsswÞ0°d, in which the re-
sulting crystal lattice is strongly anisotropic, the summation
extended to theM =2 nearest neighbors. For perpendicular
external fieldBsw=0°d, the equilibrium lattice is triangular
and hence the sum covered theM =6 nearest neighbors of
that structure. It is useful, at this point, to introduce the res-
caled, dimensionless variablesk =qa, Sm=Rm/a and ji
=a2li / sGkBTd. Then, Eq.s7d takes the form:

gm =
1

GK
E

Dr

1

M o
m=1

M

sin2 k ·Sm

2
S e1,m

2

j1skd
+

e2,m
2

j2skd
Dd2k

sm = x,yd, s8d

with the integration carried over the rescaled Brillouin zone
Dr. The integral on the right-hand side of Eq.s8d above
dependsonly on the tilt anglew.

The theoretical prediction states that the Lindemann pa-
rameters scale asg~1/G, which is the asymptotically exact
limit for small temperature or high number density. The
scaled anisotropic mean-square displacements as obtained
from harmonic lattice theory are plotted in Fig. 3, where they
are also compared to the experimental data. On the basis of

FIG. 3. The Lindemann parametersgx andgy plotted against the
tilt angle w of the magnetic field. The solidsdashedd lines corre-
spond to theoreticalgxsgyd while the trianglesssquaresd correspond
to experimentally measured values, respectively. The continuous
lines pertain to results obtained by keeping the two nearest neigh-
bors in they-direction in the summation of Eq.s8d. The filled circle
at w=0° denotes the theoretical result obtained when the sum of Eq.
s8d extends over allM =6 neighbors in the triangular lattice, which
is the stable crystal structure there. Here, theory yields results forgx

and gy, which are so close to each other that cannot be resolved
within symbol sizes used in the figure. We plot the valuesGKgx,y

which are universal within harmonic theory, whereas the experi-
mental results were obtained for different values ofG, varying be-
tween 10 and 27. The inset shows the geometry of the lattice and
directions of the external magnetic field as well as the orientation of
Lindemann parameters with respect to the lattice and field.

ANISOTROPIC MEAN-SQUARE DISPLACEMENTS IN… PHYSICAL REVIEW E 71, 031404s2005d

031404-3



these results, we can draw the following conclusions: First,
there is very good quantitative agreement between theory
and experiment at all tilt angles. Since the experimental data
were taken at different values forG, thereby the 1/G-scaling
as well as the dependence on the tilting angle is proven to
agree with the theory. Secondly, the behavior of the mean-
square displacements as a function ofw is nonmonotonic.
For increasingw, they first decrease and then grow larger
again. Third, forw,22°, the displacements parallel to the
in-plane component of the external magnetic field are
smaller than those perpendicular to this direction but the
trend is reversed as the tilt angle grows to higher values. This
behavior is unexpected at a first glance but can be under-
stood by an intuitive argument; forw<0°, there is less re-
pulsion of the particles in the direction parallel to the field,
resulting thereby in a smaller lattice constant in this direc-
tion. This, in turn, leaves less freedom for a particle to per-
form displacements than in the other, perpendicular direc-
tion. This finding implies that in case of the anisotropic
crystals the anisotropy of the Lindemann parameter doesnot
scale with the anisotropy of the underlying crystal lattice; the
reduction of the repulsions in theBi-direction does not auto-
matically imply that the oscillations in this direction are
broader in amplitude than in the perpendicular one. In addi-
tion, the mean-square displacements cannot simply be scaled
away by relating them to the nearest-neighbor distances, as
has been shown for the liquid and hexatic phasescf. Ref.
f15gd. Finally, for w<22°, the interaction is very weakly re-
pulsive in theBi-direction, hence a soft mode starts ap-
proaching in this direction, corresponding to stronger delo-
calization of particles. Atw<22° the softness is sufficient in
order to bring about acrossoverbetween the relative magni-
tudes ofgx andgy: whereas forw,22° we havegx.gy, for
w.22° the reverse is true. Theory and experiment are in
agreement regarding the location of this crossover behavior,
as can be seen from Fig. 3. In fact, theory predicts a rapid
growth of the parametergy, which indicates that the crystal
structure itself is getting mechanically unstable, as has been
shown in Ref.f9g.

Let us now turn our attention to the Lindemann param-
eters for the case of perpendicular fields,w=0°. As can be
seen in Fig. 3, in this case the anisotropy between thex- and
y-directions almost disappears. The experimental data points
for the two Lindemann parameters lie within 5% of each

other, whereas the theoretical results are much closer to each
other, so that only one pointsthe full circled can be shown
there; the difference betweengx and gy is smaller than the
symbol size. The strong reduction of the anisotropy in the
Lindemann parameters is a direct consequence of the much
higher isotropy of the triangular crystal, as opposed to the
oblique ones, stable forwÞ0°. Yet, there are two points that
must be emphasized here: first, even in the triangular crystal
there is a structural anisotropy between they-direction
swhich points towards the nearest neighbors of a given par-
ticled and thex-one, which points towards the voids, hence
the resulting isotropy in the Lindemann parameters is not a
trivial result. And secondly, in order to calculatesin theoryd
or measuresin experimentd Lindemann ratios that are almost
equal in they- and x-directions, a summation overall six
neighbors must be carried out. Indeed, as can be seen in Fig.
3, if a sum over only the two neighbors in they-direction
swhich are the nearest ones for the casewÞ0°d is carried
out, then the Lindemann parameters remain highly aniso-
tropic all the way down tow=0°. This explains both the
partial restoring of isotropy atw=0° and the “jump” of the
Lindemann values there.

In conclusion, we have demonstrated, by theory and ex-
periment, that particle displacements in a two-dimensional
anisotropic crystal are strongly anisotropic. Depending on
the pair interaction between the particles, the anisotropy in
the displacements does not necessarily follow the anisotropy
of the lattice constants. This result was obtained for colloids
but is directly relevant for any other strongly confined dipo-
lar sheets, e.g., monolayer ice in confinement in the absence
f19g or in the presencef20g of an aligning electric field. It
would be interesting to measure the full phonon spectra, in
analogy to what has already been done for the isotropic case
f21g. Furthermore, defect formation should be included in
the theory, to incorporate effects close to crystal melting.
Finally it would be interesting to study inhomogeneous field
effects which may give rise to crystalline clustersf22g and
study the particle displacements in a finite cluster.
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